Working Memory DLPFC Knowing Neurons Don Davies

Uncovering the Brain Circuitry of Short Term Memory

Have you ever asked for a phone number only to forget it moments later?  The only way to remember it is to rehearse the digits over and over in your head.  This is an example of working memory, which is a type of short-term memory for storage and manipulation of information necessary for higher order cognition.  Working memory is impaired in some diseases such as schizophrenia and Alzheimer’s.  Since working memory is used for daily tasks, memory impairment often is associated with a reduced quality of life.  If scientists can understand how the brain circuitry creates working memory, scientists may be able to treat the cognitive symptoms of diseases that impair working memory.Continue reading

Channeling Your Response to Pain Knowing Neurons Neuroscience

Channeling Your Response to Pain

“Ouch!”  Thanks to our always-alert sensory neurons that provide a spatial sense of self (proprioception) and pain (nociception), we receive an early warning to any noxious stimuli  (think needle prick or a hot stove).  Sometimes our responses to these stimuli are exaggerated and we experience hypersensitivity to pain.  Remember how painful lukewarm water feels on sunburnt skin?  This hyperalgesia can be very severe. Examples include the intense neuropathic pain caused by blowing on the skin of patients with nerve damage, the muscular pain associated with the disabling pain disorder fibromyalgia, and the excruciatingly painful phantom limb syndrome.Continue reading

Songbird, Zebra Finch, Knowing Neurons, Michael Condro, Sing, Learn, Memory, Neuroscience, Brain,

What Can Songbirds Teach Us About Ourselves?

In my last post, “Vocal Practice is for the Birds” examined one similarity between human and songbird procedural learning: the necessity for practice before performance. Zebra finches sing a series of introductory notes to prepare before beginning their mating song, much like we warm up before playing an instrument or before an athletic competition. This is but one of the many similarities found between human and songbird behaviors. In fact, scientists have been using songbirds to study many common behaviors, like spatial memory and social interactions in addition to procedural learning. Songbirds are the ideal model system for studying the neurogenetic basis of vocal learning due to the similarity of the neural structures underlying this relatively rare behavior.Continue reading

FAST-MAG in the ER

For those of you unfamiliar with cerebral vascular accidents (a.k.a. stroke), stroke is a major cause of death and disability in the United States, acting as the number three cause of medical mortality and the number one cause of permanent disability. The National Institutes of Health predicts more than 750,000 Americans will suffer a symptomatic stroke this year (that’s about 1 every 42 seconds). As a medical resident specializing in emergency medicine, strokes are something we come in contact with every day and the treatment is often challenging.Continue reading

Retinal Prostheses: Restoring Vision to the Blind

Vision is arguably one of our most important senses.  We rely on it to recognize color, shape, movement, distance, and perspective about the world around us.   Although all parts of the eye help us perceive our environment, the most vital part is the retina, the thin layer of tissue that lines the back of the eye.  This structure contains several layers of cells interconnected by synapses.  When light enters through the eye, it passes all the way through the retina, until it is captured by photoreceptors.  These cells then convert the light energy into tiny electrochemical impulses, which are processed by retinal neurons, before the signal is sent to the brain.Continue reading

How does the brain locate sound sources?

The brain has an amazing ability to identify the source of sounds around you. When driving, you can tell where an approaching fire truck is coming from and pull over accordingly. In the classic swimming pool game of “Marco Polo,” the player who is “it” swims toward the players who says “Polo.” In the field of neuroscience, this ability is called sound localization. Humans can locate the source of a sound with extreme precision (within 2 degrees of space)! This remarkable feat is accomplished by the brain’s ability to interpret the information from both ears. So how does your brain do it?Continue reading

Bend it like Beckham: The Neuroscience Way

Life is a continuum of learning motor skills to achieve goals.  At a young age, children learn how sit up, walk, jump, and then cut with scissors.  Later, they may learn how to play soccer or piano, but they will probably not be as proficient as professional athletes and musicians unless they dedicate their lives to perfecting that skill.  So, how does practice make us more perfect?  Here are suggested guidelines for efficient motor skill learning that neuroscience studies have proposed.Continue reading