What do single cell green algae have to do with the state of the art of neuroscience?

Well, a lot actually!  Green algae, or Chlamydomonas reinhardtii to be formal, are the unicellular organisms with a unique trait that has been helping make huge advances in modern neuroscience in only the past eight years.  In their natural environment, these little organisms use an “eye spot” located inside the cell to detect light and to swim toward it (phototaxis).  Researchers have been studying these little critters for years and discovered the algae use a unique photosensitive ion channel that converts a light signal into a voltage change that provides information to the algae.Continue reading

Stopping seizures is as simple as turning on a light (and some genetics)

What if you change your mind with the flip of a light switch?  Over the past decade, optogenetics has become an important component of neuroscience research.  By introducing genes that code for fast light-activated proteins (opsins) into a specific cell-type, researchers can shine a certain color of light onto living tissue to activate these opsins and examine how those specific cells’ activity modulates behavior in real-time.  For example, light-activation of specific neurons in the motor cortex of a mouse causes it to only make right turns, but otherwise behave normally when the light is off.  Thus, optogenetics is a great tool to see how neural activity is coordinated with behavior.Continue reading