Dendritic Spines Knowing Neurons

Keeping Memories Fresh by Keeping Glutamate In Check

We are another year older, perhaps a little wiser, and probably more forgetful.  Indeed, making memories is quite a process in the brain: specific synaptic connections are strengthened and new proteins are synthesized.  But as we age, the synapses that make up our memories, such as those in the hippocampus and prefrontal cortex, start to change and can be lost altogether.  The detrimental synaptic alterations may not be permanent, however, and maintaining the health of these synapses may be the key to preventing age-related cognitive decline.Continue reading

Science Fiction, Serendipity and Interneuron Specification: A Conversation with Dr. Gordon J. Fishell

Gordon FishellIt is easy to assume that if a car has a gas pedal, it needs to have brakes, and similarly, if our brain has excitatory neurons, it needs inhibition too. For a long time, the field of neuroscience had thought of inhibitory interneurons as the “brakes” of the brain, providing suppression to neuronal activity. However, in my conversation with Dr. Gordon J. Fishell, I learned that interneurons are far more fascinating cell types than merely being inhibitory! Their multifarious morphology can be attributed to a palette of functions in brain developmental and regulation.Continue reading

From Neurons to Astrocytes: The Shift of Focus in Stroke

If you think about it, blood vessels are the freeways of the body. The vast array of vasculature enables molecules to reach important destinations (organs) quickly. But, if a small part of the freeway is blocked suddenly, then the constant flow of traffic suffers and previously desired exits now become inaccessible. When such a traffic jam occurs inside a blood vessel en route to the brain, the brain region previously receiving blood and oxygen is now devoid of it. Such a phenomenon where a blood clot obstructs blood flow to a part of the brain is called ischemic stroke.Continue reading