C. elegans Knowing Neurons

Imaging the Brain with Sculpted Light

Perhaps the biggest goal in neuroscience is to understand how individual neurons interact with each other in both space and time.  The more detailed our understanding of complex neural networks is, the more we can understand how an organism’s nervous system processes information to generate behavior.  To achieve this goal, neuroscience research has focused on obtaining detailed anatomical wiring maps, such as those produced by the Human Connectome ProjectContinue reading

New Microscope Helps Neuroscientists Ask New Questions

Last week, President Obama announced the Brain Research Through Advancing Innovative Neurotechnologies (BRAIN) Initiative, a 10-year project to map the human brain.  President Obama introduced BRAIN as a way of encouraging neuroscientists to develop new technologies to study how neurons within the brain communicate with each other. New technologies are essential to helping neuroscientists ask new questions about how the brain works.  This project is similar to two other major projects: The Human Brain Project (European Union), which is working on a computer simulation of the entire brain, and The Human Connectome Project (National Institutes of Health) which is using state of the art magnetic resonance imaging (MRI) to track projections all over the brain.Continue reading

You Are Here: Mapping The World With Neurons

“You are here.”  It’s the phrase that you’ll find on almost any map, punctuated with the ubiquitous oversized arrow.  It is the salient mark in a sea of confusing lines, shapes and labels that provides orientation and a sense of direction.  Since the release of Google Maps and smart phones, many of us have become accustomed to having a boundless map in the palms of our hands, one that constantly updates according to our position in the world, complete with a large arrow.  But in the absence of a map, directory, or an oversized arrow, how do you find your way?  Where is the internal map in your brain and how does it store information about the world in a sea of connected neurons?  Neuroscientists have been asking these questions for nearly thirty years now, and we only have a vague idea of how the brain forms internal representations of the outside world.Continue reading

What do single cell green algae have to do with the state of the art of neuroscience?

Well, a lot actually!  Green algae, or Chlamydomonas reinhardtii to be formal, are the unicellular organisms with a unique trait that has been helping make huge advances in modern neuroscience in only the past eight years.  In their natural environment, these little organisms use an “eye spot” located inside the cell to detect light and to swim toward it (phototaxis).  Researchers have been studying these little critters for years and discovered the algae use a unique photosensitive ion channel that converts a light signal into a voltage change that provides information to the algae.Continue reading

Stopping seizures is as simple as turning on a light (and some genetics)

What if you change your mind with the flip of a light switch?  Over the past decade, optogenetics has become an important component of neuroscience research.  By introducing genes that code for fast light-activated proteins (opsins) into a specific cell-type, researchers can shine a certain color of light onto living tissue to activate these opsins and examine how those specific cells’ activity modulates behavior in real-time.  For example, light-activation of specific neurons in the motor cortex of a mouse causes it to only make right turns, but otherwise behave normally when the light is off.  Thus, optogenetics is a great tool to see how neural activity is coordinated with behavior.Continue reading